一、塑料韌性的性能表征
剛性越大材料越不容易發生形變,韌性越大則越容易發生形變。
韌性與剛性相對,是反映物體形變難易程度的一" />
<fieldset id="uekqg"><noframes id="uekqg"></noframes></fieldset>
      • <rt id="uekqg"></rt>
      • <rt id="uekqg"></rt>
        <center id="uekqg"><strong id="uekqg"></strong></center>
      • 您的位置:首頁 > 技術中心

        技術中心>>

        PA尼龍塑料改性技術劃分

             PA尼龍(PA610,PA612,PA12,PA1010,PA1012等。)塑料改性技術劃分概況:
             一、塑料韌性的性能表征
             剛性越大材料越不容易發生形變,韌性越大則越容易發生形變。
             韌性與剛性相對,是反映物體形變難易程度的一個屬性,剛性越大材料越不容易發生形變,韌性越大則越容易發生形變。
             通常,剛性越大,材料的硬度、拉伸強度、拉伸模量(楊氏模量)、彎曲強度、彎曲模量均較大;反之,韌性越大,斷裂伸長率和沖擊強度就越大。
             沖擊強度表現為樣條或制件承受沖擊的強度,通常泛指樣條在產生破裂前所吸收的能量。沖擊強度隨樣條形態、試驗方法及試樣條件表現不同的值,因此不能歸為材料的基本性質。
             不同的沖擊試驗方法所得到的結果是不能進行比較的。
             沖擊試驗的方法很多,依據 試驗溫度分:有常溫沖擊、低溫沖擊和高溫沖擊三種。
             依據試樣受力狀態,可分為彎曲沖擊-簡支梁和懸臂梁沖擊、拉伸沖擊、扭轉沖擊和剪切沖擊。
             依據采用的能量和沖擊次數,可分為大能量的一次沖擊和小能量的多次沖擊試驗。
             不同材料或不同用途可選擇不同的沖擊試驗方法,并得到不同的結果,這些結果是不能進行比較的。
             二、塑料增韌機理及影響因素
             (一)銀紋-剪切帶理論
             在橡膠增韌塑料的共混體系中,橡膠顆粒的作用主要有兩個方面:
             一方面,作為應力集中的中心,誘發基體產生大量的銀紋和剪切帶;
             另一方面,控制銀紋的發展使銀紋及時終止而不致發展成破壞性的裂紋。銀紋末端的應力場可以誘發剪切帶而使銀紋終止。當銀紋擴展到剪切帶時也會阻止銀紋的發展。在材料受到應力作用時大量的銀紋和剪切帶的產生和發展要消耗大量的能量,從而使得材料的韌性提高。銀紋化宏觀表現為應力白發現象,而剪切帶則與細頸產生相關,其在不同塑料基體中表現不同。
            例如,HIPS基體韌性較小,銀紋化,應力發白,銀紋化體積增加,橫向尺寸基本不變,拉伸無細頸;增韌PVC,基體韌性大,屈服主要由剪切帶造成,有細頸,無應力發白;HIPS/PPO,銀紋、剪切帶都占有相當比例,細頸和應力發白現象同時產生。
             (二)影響塑料增韌效果的因素主要有三點
             1. 基體樹脂的特性
             研究表明, 提高基體樹脂的韌性有利于提高增韌塑料的增韌效果,提高基體樹脂的韌性可通過以下途徑實現:
            增大基體樹脂的分子量,使分子量分布變得窄小;通過控制是否結晶以及結晶度、晶體尺寸和晶型等提高韌性。例如,PP中加入成核劑提高結晶速率,細化晶粒,從而提高斷裂韌性。
             2. 增韌劑的特性和用量
             ①. 增韌劑分散相粒徑的影響——對于彈性體增韌塑料,基體樹脂的特性不同,彈性體分散相粒徑的最佳值也不相同。例如,HIPS中橡膠粒徑最佳值為0.8-1.3μm,ABS最佳粒徑為0.3μm左右,PVC改性的ABS其最佳粒徑為0.1μm左右。
             ②. 增韌劑用量的影響——增韌劑的加入量存在一個最佳值,這與粒子間距參數有關;
             ③. 增韌劑玻璃化轉變溫度的影響——一般彈性體的玻璃化溫度越低,增韌效果越好;
             ④. 增韌劑與基體樹脂界面強度的影響——界面粘結強度對增韌效果的影響不同體系有所不同;
             ⑤. 彈性體增韌劑結構的影響——與彈性體類型、交聯度等有關。
             3、兩相間的結合力
             兩相間具備良好的結合力,可以使得應力發生時可以在相間進行有效的傳遞從而消耗更多的能量,宏觀上塑料的綜合性能就越好,其中尤以沖擊強度的改善最為顯著。通常這種結合力可以理解為兩相之間的相互作用力,接枝共聚和嵌段共聚就是典型的增加兩相結合力的方法,不同的是它們通過化學合成的方法形成了化學鍵,如接枝共聚物HIPS、ABS,嵌段共聚物SBS、聚氨酯。
             對于增韌劑增韌塑料而言,屬于物理共混的方法,但是其原理是一樣的。理想的共混體系應是兩組分既部分相容又各自成相,相間存在一界面層,在界面層中兩種聚合物的分子鏈相互擴散,有明顯的濃度梯度,通過增大共混組分間的相容性,使其具備良好的結合力,進而增強擴散使界面彌散,加大界面層的厚度。而這,即是塑料增韌亦是制備高分子合金的關鍵技術之所在——高分子相容技術!
             三、塑料增韌劑有哪些?如何劃分?
             (一)基體樹脂的特性
             1、橡膠彈性體增韌:EPR(二元乙丙)、EPDM(三元乙丙)、順丁橡膠(BR)、天然橡膠(NR)、異丁烯橡膠(IBR)、丁腈橡膠(NBR)等;適用于所用塑料樹脂的增韌改性;
             2、熱塑性彈性體增韌:SBS、SEBS、POE、TPO、TPV等;多用于聚烯烴或非極性樹脂增韌,用于聚酯類、聚酰胺類等含有極性官能團的聚合物增韌時需加入相容劑;
             3、核-殼共聚物及反應型三元共聚物增韌:ACR(丙烯酸酯類)、MBS(丙烯酸甲酯-丁二烯-苯乙烯共聚物)、PTW(乙烯-丙烯酸丁酯—甲基丙烯酸縮水甘油酯共聚物)、E-MA-GMA(乙烯-丙烯酸甲酯—甲基丙烯酸縮水甘油酯共聚物)等;多用于工程塑料以及耐高溫高分子合金增韌;
             4、高韌性塑料共混增韌: PP/PA、PP/ABS、PA/ABS、HIPS/PPO、PPS/PA、PC/ABS、PC/PBT等;高分子合金技術是制備高韌性工程塑料的重要途徑;
             5、其它方式增韌:納米粒子增韌(如納米CaCO 3 )、沙林樹脂(杜邦金屬離聚物)增韌等;
             (二)在實際的工業生產中,改性塑料的增韌大概分以下情況:
             1、合成樹脂本身韌性不足,需要提高韌性以滿足使用需求,如GPPS、均聚PP等;
             2、大幅度提高塑料的韌性,實現超韌化、低溫環境長期使用的要求,如超韌尼龍;
             3、對樹脂進行了填充、阻燃等改性后引起了材料的性能下降,此時必須進行有效的增韌。
             通用塑料一般都是通過自由基加成聚合而得,分子主鏈及側鏈不含極性基團,增韌時添加橡膠粒子及彈性體粒子即可獲得較好的增韌效果;
        而工程塑料一般是由縮合聚合而得,分子鏈的側鏈或端基含有極性基團,增韌時可通過加入官能團化的橡膠或彈性體粒子較高的韌性。
             四、塑料增韌關鍵在于增容
             一般而言,塑料在受到外力作用時以界面脫黏、空洞化、基體剪切屈服的過程吸收、耗散能量,除了非極性塑料樹脂增韌時可以直接加入與其相容性好的彈性體粒子(相似相容原理)時,其它極性樹脂都需要有效的增容才能實現最終增韌的目的。前面提到的幾類接枝共聚物 作為增韌劑時,都會與基體產生 強烈的相互作用,例如:
             1. 帶環氧官能團型增韌機理:環氧基團開環后與聚合物端羥基、羧基或胺基發生加成反應。
             2. 核殼型增韌機理:外層官能團與組分充分相容,橡膠起到增韌效果。
             3. 離聚體型增韌機理:借助金屬離子與高分子鏈的羧酸根之間的絡合作用形成物理交聯網絡,從而起到增韌的作用。
             實際上,如果把增韌劑看作一類聚合物,就可以把這種增容原理延伸到所有的高分子共混物中。如下表,工業上制備有用的聚合物共混物時,反應性增容是我們必須要運用的技術,此時增韌劑就有了不一樣的意義,“增韌相容劑”,“界面乳化劑”的稱謂就顯得格外形象!
             綜上,塑料增韌無論對于結晶性塑料還是無定形塑料同等重要,而從通用塑料、工程塑料到特種工程塑料其耐熱性逐漸提高,成本價格也不斷攀升,這樣就對增韌劑的耐熱性、耐老化性等提出了更高的要求,同時也是對塑料改性增韌技術一次大的考驗,而最重要的也是最關鍵的一條就是和基體及組分保持良好的相容性!

        如果您有關于PA尼龍塑料改性技術劃分的需求或者疑問,可以撥打電話與我們共同探討交流,歡迎您的來電!

        尼龍PA610樹脂 尼龍PA612樹脂 尼龍PA1010樹脂 尼龍PA1212樹脂    技術咨詢熱線:18602297376
        查看:

        地點:天津市和平區衛津路財富大廈B11層 ??郵編:300070 sitemap.xml

        電話:022 - 23447568 18602297376 ??天津立悅化學科技有限公司 ?郵箱:sales@lyuechem.com

        版權所有? 2010-2024 津ICP備18001702號??天津谷騏科技有限公司 技術支持?津公網安備 12010102000573號

        97精品久久天干天天天按摩| 久久久久久亚洲Av无码精品专口 | 亚洲人AV永久一区二区三区久久 | 77777亚洲午夜久久多喷| 国产成人香蕉久久久久| 久久中文字幕人妻熟av女| 99精品久久久久久久婷婷| 一级做a爰片久久毛片看看| 丰满少妇高潮惨叫久久久| 久久中文字幕精品| 精品久久久久久无码人妻蜜桃 | 91精品观看91久久久久久| 中文字幕久久精品无码| 久久涩综合| 国产视频久久| 日韩亚洲欧美久久久www综合网| 国产69精品久久久久APP下载 | 久久久久久亚洲精品不卡| 国内精品久久人妻互换| 无码人妻精品一区二区三区久久| 久久se精品一区精品二区国产| 7777久久亚洲中文字幕| 无码人妻久久久一区二区三区| 久久亚洲精品成人无码网站| 国产精品99久久精品爆乳| 99久久人人爽亚洲精品美女| 国产欧美一区二区久久| 国产精品久久久久久影院| 丰满少妇高潮惨叫久久久| 国产精品久久99| 久久精品免费观看| 久久免费线看线看| 91精品婷婷国产综合久久| 国产日韩欧美久久| 青春久久| 亚洲精品乱码久久久久66| 午夜精品久久久久久99热| 久久夜色精品国产噜噜麻豆| 国产精品天天影视久久综合网| 91精品国产高清久久久久久国产嫩草| 97久久精品国产精品青草|